Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 7 von 9

Details

Autor(en) / Beteiligte
Titel
Salvage harvesting for bioenergy in Canada: From sustainable and integrated supply chain to climate change mitigation
Ist Teil von
  • Wiley interdisciplinary reviews. Energy and environment, 2018-09, Vol.7 (5), p.n/a
Ort / Verlag
Hoboken, USA: Wiley Periodicals, Inc
Erscheinungsjahr
2018
Link zum Volltext
Quelle
Wiley Online Library All Journals
Beschreibungen/Notizen
  • Driven by the policy imperatives of mitigating greenhouse gas (GHG) emissions and improving energy security, an increasing proportion of global energy demand is being met by nonfossil energy sources. The socioeconomic and environmental benefits of replacing fossil fuels with bioenergy are complex; however, debate continues about issues such as best practices for biomass removal, stable supply chains, and GHG mitigation. With the greatest biomass per capita in the world, Canada could play an increasing role in the future of global bioenergy and the emerging bioeconomy. This paper reviews the utilization of feedstock salvaged after natural disturbances (fire and insect outbreaks) to supply wood‐based bioenergy, by addressing the following multidisciplinary questions: (1) How much salvaged feedstock is available, and what are the uncertainties around these estimates? (2) How can sustainable practices to support increased removal of biomass be implemented? (3) What are the constraints on development of an integrated supply chain and cost‐effective mobilization of the biomass? (4) Is the quality of biomass from salvaged trees suitable for conversion to bioenergy? (5) What is the potential for climate change mitigation? In average, salvaged feedstock from fire and insects could theoretically provide about 100 × 106 oven Dry ton (ODT) biomass per year, with high variability over time and space. Existing policies and guidelines for harvesting of woody biomass in Canadian jurisdictions could support sustainable biomass removal. However, uncertainties remain as to the development of competitive and profitable supply chains, because of the large distances between the locations of this feedstock and available processing sites. Another uncertainty lies in the time needed for a benefit in climate change mitigation to occur. A flexible supply chain, integrated with other sources of biomass residues, is needed to develop a cost‐efficient bioenergy sector. This article is categorized under: Bioenergy > Climate and Environment a) Forest area disturbed by forest fire and insect outbreaks in Canada. Damaged stands and dead wood following forest fire and insect infestations have significant impacts on the forest industry by reducing timber resources (Photo 1: fire ; Photo 2: Dead trees following infestation of mountain pine beetle in central British Columbia; Photo 3: Defoliation from Spruce Budworm in Quebec. Photo credits: Natural Resources Canada, Canadian Forest Service). (b) Annual area disturbed by fire and insect outbreaks in Canada. This abundant biomass represents an untapped feedstock to be mobilized for the bioenergy sector (Data sources: Ministère des Forêts, de la Faune et des Parcs, 2017; Natural Resources Canada, 2017d).

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX