Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 20 von 149

Details

Autor(en) / Beteiligte
Titel
Single Metal Atoms Anchored in Two‐Dimensional Materials: Bifunctional Catalysts for Fuel Cell Applications
Ist Teil von
  • ChemCatChem, 2018-07, Vol.10 (14), p.3034-3039
Ort / Verlag
Weinheim: Wiley Subscription Services, Inc
Erscheinungsjahr
2018
Quelle
Wiley Online Library
Beschreibungen/Notizen
  • Single metal atoms doped in two‐dimensional materials have attracted particular attention for various catalytic reactions, due to their unique properties beyond metal catalysts. Herein we present density functional theory (DFT) calculations to study a wide range of such systems for oxygen reduction reaction (ORR) and hydrogen oxidation reaction (HOR) for application in cathode and anode of fuel cell, respectively. We find that the scaling relation of adsorption free energies of relevant ORR intermediates changes in the direction of improved activity. By considering more than 50 combinations, various ORR and HOR candidates are identified with improved catalytic activities compared to the state‐of‐the‐art Pt (111). Particularly, Rh embedded in N‐doped graphene is predicted to be markedly active for bifunctional fuel cell catalysis. This work highlights the potential of these systems as new classes of electrocatalysts to maximize the ORR catalytic activity and alleviate the use of precious metals Single metal atoms anchored in two‐dimensional materials are interesting platforms for oxygen reduction and hydrogen oxidation reactions. Using theoretical calculations, we show that such systems present markedly different catalytic behavior from the known classes of materials.
Sprache
Englisch
Identifikatoren
ISSN: 1867-3880
eISSN: 1867-3899
DOI: 10.1002/cctc.201800447
Titel-ID: cdi_proquest_journals_2071556799

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX