Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 23 von 53

Details

Autor(en) / Beteiligte
Titel
Definitive Structural Identification toward Molecule‐Type Sites within 1D and 2D Carbon‐Based Catalysts
Ist Teil von
  • Advanced energy materials, 2018-07, Vol.8 (19), p.n/a
Ort / Verlag
Weinheim: Wiley Subscription Services, Inc
Erscheinungsjahr
2018
Link zum Volltext
Quelle
Wiley-Blackwell Journals
Beschreibungen/Notizen
  • Developing facile preparation routes and atomic‐level characterization methods for single‐atom catalysts is highly desirable but still challenging. Herein, a general strategy is proposed to construct transition metal single atoms within 1D and 2D carbon supports. The carbon supports, typically graphene and carbon nanotubes, are coated with various transition metal‐containing bimetal hydroxides, followed by polydopamine coating and high‐temperature pyrolysis. X‐ray absorption fine structure spectroscopy measurements and simulations efficiently indicate that single atoms (Co, Fe, or Cu) are captured within the applied carbon supports, distinctively forming exclusive molecule‐type sites. As a proof‐of‐concept application, the obtained catalysts exhibit remarkable performance for electrochemical oxygen reduction reaction, even surpassing commercial Pt/C catalyst. The developed versatile route opens up new avenues for the design of carbon‐based catalysts with definite molecular active sites. The atomic‐level structural identifications provide significant guidance for mechanistic studies toward single‐atom catalysts. A versatile space‐confinement strategy is developed to capture single metal atoms within typical 1D and 2D carbon supports (carbon nanotubes and graphene). The structural identifications through the simulations of X‐ray absorption near‐edge structure spectra efficiently demonstrate that these single atoms form exclusive molecule‐type sites (MN4C8O2‐2, M = Co, Fe, Cu).
Sprache
Englisch
Identifikatoren
ISSN: 1614-6832
eISSN: 1614-6840
DOI: 10.1002/aenm.201800436
Titel-ID: cdi_proquest_journals_2064233248

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX