Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 1 von 19609
International journal of automation and computing, 2016-06, Vol.13 (3), p.226-234
2016
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Minimal Gated Unit for Recurrent Neural Networks
Ist Teil von
  • International journal of automation and computing, 2016-06, Vol.13 (3), p.226-234
Ort / Verlag
Beijing: Institute of Automation, Chinese Academy of Sciences
Erscheinungsjahr
2016
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • Recurrent neural networks (RNN) have been very successful in handling sequence data. However, understanding RNN and finding the best practices for RNN learning is a difficult task, partly because there are many competing and complex hidden units, such as the long short-term memory (LSTM) and the gated recurrent unit (GRU). We propose a gated unit for RNN, named as minimal gated unit (MCU), since it only contains one gate, which is a minimal design among all gated hidden units. The design of MCU benefits from evaluation results on LSTM and GRU in the literature. Experiments on various sequence data show that MCU has comparable accuracy with GRU, but has a simpler structure, fewer parameters, and faster training. Hence, MGU is suitable in RNN's applications. Its simple architecture also means that it is easier to evaluate and tune, and in principle it is easier to study MGU's properties theoretically and empirically.
Sprache
Englisch
Identifikatoren
ISSN: 1476-8186
eISSN: 1751-8520
DOI: 10.1007/s11633-016-1006-2
Titel-ID: cdi_proquest_journals_2063833154

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX