Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Well-balanced finite difference weighted essentially non-oscillatory schemes for the Euler equations with static gravitational fields
Ist Teil von
Computers & mathematics with applications (1987), 2018-03, Vol.75 (6), p.2071-2085
Ort / Verlag
Oxford: Elsevier Ltd
Erscheinungsjahr
2018
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
Euler equations of compressible gas dynamics, coupled with a source term due to the gravitational fields, often appear in many interesting astrophysical and atmospheric applications. In this paper, we design high order finite difference weighted essentially non-oscillatory (WENO) methods for the Euler equations under static gravitation fields, which are well-balanced for known steady state solutions. We simplify the well-balanced WENO methods designed in Xing and Shu (2013) for the isothermal equilibrium, and then extend them to more general steady state solutions which include both isothermal and polytropic equilibria. One- and two-dimensional numerical examples are provided at the end to test the performance of the proposed WENO methods and verify these properties numerically.