Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 24 von 6734
Multimedia tools and applications, 2018-11, Vol.77 (22), p.29949-29969
2018
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Eclectic domain mixing for effective adaptation in action spaces
Ist Teil von
  • Multimedia tools and applications, 2018-11, Vol.77 (22), p.29949-29969
Ort / Verlag
New York: Springer US
Erscheinungsjahr
2018
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • Although videos appear to be very high-dimensional in terms of duration × frame-rate × resolution, temporal smoothness constraints ensure that the intrinsic dimensionality for videos is much lower. In this paper, we use this idea for investigating Domain Adaptation (DA) in videos, an area that remains under-explored. An approach that has worked well for the image DA is based on the subspace modeling of the source and target domains, which works under the assumption that the two domains share a latent subspace where the domain shift can be reduced or eliminated. In this paper, first we extend three subspace based image DA techniques for human action recognition and then combine it with our proposed Eclectic Domain Mixing (EDM) approach to improve the effectiveness of the DA. Further, we use discrepancy measures such as Symmetrized KL Divergence and Target Density Around Source for empirical study of the proposed EDM approach. While, this work mainly focuses on Domain Adaptation in videos, for completeness of the study, we comprehensively evaluate our approach using both object and action datasets. In this paper, we have achieved consistent improvements over chosen baselines and obtained some state-of-the-art results for the datasets.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX