Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 15 von 145

Details

Autor(en) / Beteiligte
Titel
Strigolactones positively regulate chilling tolerance in pea and in Arabidopsis
Ist Teil von
  • Plant, cell and environment, 2018-06, Vol.41 (6), p.1298-1310
Ort / Verlag
United States: Wiley Subscription Services, Inc
Erscheinungsjahr
2018
Quelle
MEDLINE
Beschreibungen/Notizen
  • Strigolactones (SL) fulfil important roles in plant development and stress tolerance. Here, we characterized the role of SL in the dark chilling tolerance of pea and Arabidopsis by analysis of mutants that are defective in either SL synthesis or signalling. Pea mutants (rms3, rms4, and rms5) had significantly greater shoot branching with higher leaf chlorophyll a/b ratios and carotenoid contents than the wild type. Exposure to dark chilling significantly decreased shoot fresh weights but increased leaf numbers in all lines. Moreover, dark chilling treatments decreased biomass (dry weight) accumulation only in rms3 and rms5 shoots. Unlike the wild type plants, chilling‐induced inhibition of photosynthetic carbon assimilation was observed in the rms lines and also in the Arabidopsis max3‐9, max4‐1, and max2‐1 mutants that are defective in SL synthesis or signalling. When grown on agar plates, the max mutant rosettes accumulated less biomass than the wild type. The synthetic SL, GR24, decreased leaf area in the wild type, max3‐9, and max4‐1 mutants but not in max2‐1 in the absence of stress. In addition, a chilling‐induced decrease in leaf area was observed in all the lines in the presence of GR24. We conclude that SL plays an important role in the control of dark chilling tolerance. Strigolactones (SL) are associated with drought tolerance but their functions in other stresses remain poorly characterized. Using a range of pea (rms) and Arabidopsis thaliana (max) mutants that are deficient in either SL synthesis or signalling, we studied plant responses to dark chilling stress. In contrast to the pea and Arabidopsis wild types, which are relatively insensitive to dark chilling, the max mutants and rms mutants showed chilling‐induced inhibition of photosynthesis and a decrease in dry biomass accumulation. These findings demonstrate that SL regulate dark chilling tolerance in plants.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX