Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 3 von 50
Applied physics. A, Materials science & processing, 2018-05, Vol.124 (5), p.1-13, Article 392
2018
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Modeling and simulation of viscoelastic biological particles’ 3D manipulation using atomic force microscopy
Ist Teil von
  • Applied physics. A, Materials science & processing, 2018-05, Vol.124 (5), p.1-13, Article 392
Ort / Verlag
Berlin/Heidelberg: Springer Berlin Heidelberg
Erscheinungsjahr
2018
Quelle
2022 ECC(Springer)
Beschreibungen/Notizen
  • Manipulation of the biological particles by atomic force microscopy is used to transfer these particles inside body’s cells, diagnosis and destruction of the cancer cells and drug delivery to damaged cells. According to the impossibility of simultaneous observation of this process, the importance of modeling and simulation can be realized. The contact of the tip with biological particle is important during manipulation, therefore, the first step of the modeling is choosing appropriate contact model. Most of the studies about contact between atomic force microscopy and biological particles, consider the biological particle as an elastic material. This is not an appropriate assumption because biological cells are basically soft and this assumption ignores loading history. In this paper, elastic and viscoelastic JKR theories were used in modeling and simulation of the 3D manipulation for three modes of tip–particle sliding, particle–substrate sliding and particle–substrate rolling. Results showed that critical force and time in motion modes (sliding and rolling) for two elastic and viscoelastic states are very close but these magnitudes were lower in the viscoelastic state. Then, three friction models, Coulomb, LuGre and HK, were used for tip–particle sliding mode in the first phase of manipulation to make results closer to reality. In both Coulomb and LuGre models, critical force and time are very close for elastic and viscoelastic states but in general critical force and time prediction of HK model was higher than LuGre and the LuGre model itself had higher prediction than Coulomb.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX