Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 14 von 245

Details

Autor(en) / Beteiligte
Titel
Evaluation of expression and glycosylation status of UGT1A10 in Supersomes and intestinal epithelial cells with a novel specific UGT1A10 monoclonal antibody
Ist Teil von
  • Drug metabolism and disposition, 2017-09, Vol.45 (9), p.1027-1034
Ort / Verlag
United States: American Society for Pharmacology and Experimental Therapeutics, Inc
Erscheinungsjahr
2017
Quelle
Free E-Journal (出版社公開部分のみ)
Beschreibungen/Notizen
  • UDP-Glucuronosyltransferases (UGTs) are major phase II drug-metabolizing enzymes. Each member of the UGT family exhibits a unique but occasionally overlapping substrate specificity and tissue-specific expression pattern. Earlier studies have reported that human UGT1A10 is expressed in the gastrointestinal tract at the mRNA level, but the evaluation at the protein level, especially tissue or cellular localization, has lagged behind because of the lack of a specific antibody. In this study, we prepared a monoclonal antibody to UGT1A10 to elucidate the tissue/cellular distribution and interindividual variability of UGT1A10 protein expression. Western blot analysis revealed that the prepared antibody does not cross-react with any other human UGTs. Using this specific antibody, we observed that UGT1A10 protein is expressed in the small intestine but not in the liver or kidney. Immunohistochemical analysis revealed the expression of UGT1A10 protein in epithelial cells of the crypts and villi of the duodenum. In the small intestine microsomes from six individuals, the UGT1A10 protein levels exhibited 16-fold variability. Dopamine 3- and 4-glucuronidation, which is mainly catalyzed by UGT1A10 and by other UGT isoforms marginally, exhibited 50- to 65-fold variability, and they were not correlated with the UGT1A10 protein levels. Interestingly, the enzymatic activities of recombinant UGT1A10 in insect cells that were normalized to the UGT1A10 protein level were markedly lower than those in pooled human small intestine microsomes. Thus, the UGT1A10 antibody we generated made it possible to investigate the tissue/cellular distribution and interindividual variability of UGT1A10 protein expression for understanding the pharmacological and toxicological role of UGT1A10.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX