UNIVERSI
TÄ
TS-
BIBLIOTHEK
P
ADERBORN
Anmelden
Menü
Menü
Start
Hilfe
Blog
Weitere Dienste
Neuerwerbungslisten
Fachsystematik Bücher
Erwerbungsvorschlag
Bestellung aus dem Magazin
Fernleihe
Einstellungen
Sprache
Deutsch
Deutsch
Englisch
Farbschema
Hell
Dunkel
Automatisch
Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist
gegebenenfalls
nur via VPN oder Shibboleth (DFN-AAI) möglich.
mehr Informationen...
Universitätsbibliothek
Katalog
Suche
Details
Zur Ergebnisliste
Ergebnis 25 von 47717
Datensatz exportieren als...
BibTeX
Honeycomb Schrödinger Operators in the Strong Binding Regime
Communications on pure and applied mathematics, 2018-06, Vol.71 (6), p.1178-1270
Fefferman, Charles L.
Lee‐Thorp, James P.
Weinstein, Michael I.
2018
Volltextzugriff (PDF)
Details
Autor(en) / Beteiligte
Fefferman, Charles L.
Lee‐Thorp, James P.
Weinstein, Michael I.
Titel
Honeycomb Schrödinger Operators in the Strong Binding Regime
Ist Teil von
Communications on pure and applied mathematics, 2018-06, Vol.71 (6), p.1178-1270
Ort / Verlag
New York: John Wiley and Sons, Limited
Erscheinungsjahr
2018
Quelle
Wiley-Blackwell Journals
Beschreibungen/Notizen
In this article, we study the Schrödinger operator for a large class of periodic potentials with the symmetry of a hexagonal tiling of the plane. The potentials we consider are superpositions of localized potential wells, centered on the vertices of a regular honeycomb structure corresponding to the single electron model of graphene and its artificial analogues. We consider this Schrödinger operator in the regime of strong binding, where the depth of the potential wells is large. Our main result is that for sufficiently deep potentials, the lowest two Floquet‐Bloch dispersion surfaces, when appropriately rescaled, converge uniformly to those of the two‐band tight‐binding model (Wallace, 1947 [56]). Furthermore, we establish as corollaries, in the regime of strong binding, results on (a) the existence of spectral gaps for honeycomb potentials that break PT symmetry and (b) the existence of topologically protected edge states—states that propagate parallel to and are localized transverse to a line defect or “edge”—for a large class of rational edges, and that are robust to a class of large transverse‐localized perturbations of the edge. We believe that the ideas of this article may be applicable in other settings for which a tight‐binding model emerges in an extreme parameter limit.© 2017 Wiley Periodicals, Inc.
Sprache
Englisch
Identifikatoren
ISSN: 0010-3640
eISSN: 1097-0312
DOI: 10.1002/cpa.21735
Titel-ID: cdi_proquest_journals_2027210744
Format
–
Schlagworte
Applied mathematics
,
Binding
,
Honeycomb construction
,
Schrodinger equation
,
Symmetry
,
Tiling
Weiterführende Literatur
Empfehlungen zum selben Thema automatisch vorgeschlagen von
bX