Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 20 von 1120

Details

Autor(en) / Beteiligte
Titel
A combined adaptive neuro-fuzzy inference system–firefly algorithm model for predicting the roller length of a hydraulic jump on a rough channel bed
Ist Teil von
  • Neural computing & applications, 2018-03, Vol.29 (6), p.249-258
Ort / Verlag
London: Springer London
Erscheinungsjahr
2018
Quelle
SpringerLink
Beschreibungen/Notizen
  • Hydraulic jumps can occur downstream of hydraulic structures, such as normal weirs, gates and ogee spillways. The roller length is one of the most important parameters of hydraulic jumps in open channels. In this study, the roller length of a hydraulic jump on a rough bed is predicted using a hybrid of adaptive neuro-fuzzy inference systems and the firefly algorithm (ANFIS–FA). First, the effect of parameters including the Froude number (Fr), sequent depth ( h 2 / h 1 ) and relative roughness ( ks / h 1 ) upstream of a hydraulic jump is studied. Following the modeling result analysis, ANFIS–FA is introduced as the superior model for estimating the roller length of a hydraulic jump on a rough bed according to Fr, h 2 / h 1 and ks / h 1 . The calculated MAPE , RMSE and correlation coefficient values for the superior model are 7.606, 1.771 and 0.970, respectively. ANFIS–FA predicted approximately 40 % of the results with less than 5 % error, and only 36 % of data had more than 10 % error.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX