Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 14 von 6529

Details

Autor(en) / Beteiligte
Titel
Double/debiased machine learning for treatment and structural parameters
Ist Teil von
  • The econometrics journal, 2018-02, Vol.21 (1), p.C1-C68
Ort / Verlag
Oxford: Royal Economic Society and John Wiley & Sons Ltd
Erscheinungsjahr
2018
Quelle
Wiley-Blackwell Journals
Beschreibungen/Notizen
  • We revisit the classic semi-parametric problem of inference on a low-dimensional parameter θ₀ in the presence of high-dimensional nuisance parameters η₀. We depart from the classical setting by allowing for η₀ to be so high-dimensional that the traditional assumptions (e.g. Donsker properties) that limit complexity of the parameter space for this object break down. To estimate η₀, we consider the use of statistical or machine learning (ML) methods, which are particularly well suited to estimation in modern, very high-dimensional cases. ML methods perform well by employing regularization to reduce variance and trading off regularization bias with overfitting in practice. However, both regularization bias and overfitting in estimating η₀ cause a heavy bias in estimators of θ₀ that are obtained by naively plugging ML estimators of η₀ into estimating equations for θ₀. This bias results in the naive estimator failing to be N-½ consistent, where N is the sample size. We show that the impact of regularization bias and overfitting on estimation of the parameter of interest θ₀ can be removed by using two simple, yet critical, ingredients: (1) using Neyman-orthogonal moments/scores that have reduced sensitivity with respect to nuisance parameters to estimate θ₀; (2) making use of cross-fitting, which provides an efficient form of data-splitting. We call the resulting set of methods double or debiased ML (DML). We verify that DML delivers point estimators that concentrate in an N-½-neighbourhood of the true parameter values and are approximately unbiased and normally distributed, which allows construction of valid confidence statements. The generic statistical theory of DML is elementary and simultaneously relies on only weak theoretical requirements, which will admit the use of a broad array of modern ML methods for estimating the nuisance parameters, such as random forests, lasso, ridge, deep neural nets, boosted trees, and various hybrids and ensembles of these methods. We illustrate the general theory by applying it to provide theoretical properties of the following: DML applied to learn the main regression parameter in a partially linear regression model; DML applied to learn the coefficient on an endogenous variable in a partially linear instrumental variables model; DML applied to learn the average treatment effect and the average treatment effect on the treated under unconfoundedness; DML applied to learn the local average treatment effect in an instrumental variables setting. In addition to these theoretical applications, we also illustrate the use of DML in three empirical examples.
Sprache
Englisch
Identifikatoren
ISSN: 1368-4221
eISSN: 1368-423X
DOI: 10.1111/ectj.12097
Titel-ID: cdi_proquest_journals_1999674068

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX