Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 11 von 584

Details

Autor(en) / Beteiligte
Titel
Bacterial endophytes from rice cut grass (Leersia oryzoides L.) increase growth, promote root gravitropic response, stimulate root hair formation, and protect rice seedlings from disease
Ist Teil von
  • Plant and soil, 2018-01, Vol.422 (1/2), p.223-238
Ort / Verlag
Cham: Springer
Erscheinungsjahr
2018
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • Background and Aims Leersia oryzoides, a wild relative of rice (Oryza sativa), may carry potential seed-borne bacterial endophytes which could be used to enhance growth of rice. We hypothesized that seed-associated bacteria from L. oryzoides would be compatible with rice and promote seedling growth, development, and survival. Methods We isolated bacteria from seed of L. oryzoides and checked compatibility with rice as well as Bermuda grass seeds for seedling growth promotion. Internal colonisation of bacteria into root cells was observed by ROS staining and microscopic observation. Growth promoting bacteria were evaluated for IAA production, phosphate solubilization and antifungal activities. Results Overall, ten bacteria were found to be growth promoting in rice seedlings with effects including restoration of root gravitropic response, increased root and shoot growth, and stimulation of root hair formation. All bacteria were identified by 16S rDNA sequencing. Six bacteria were found to become intracellular in root parenchyma and root hairs in rice and in Bermuda grass seedlings. Six bacteria were able to produce IAA in LB broth with highest (47.06 ± 1.99 μg ml−1) by LTE3 (Pantoea hericii). Nine isolates solubilized phosphate and inhibited at least one soil borne fungal pathogen. Conclusions Seed bacteria of L. oryzoides are compatible with rice. Many of these bacteria become intracellular, induce root gravitropic response, increase root and shoot growth, and stimulate root hair formation in both rice and Bermuda grass seedlings. Presence of bacteria protects seedlings from soil pathogens during seedling establishment. This research suggests that bioprospecting microbes on near relatives of rice and other crop plants may be a viable strategy to obtain microbes to improve cultivation of crops.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX