Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 16 von 247
Climate dynamics, 2018-11, Vol.51 (9-10), p.3291-3309
2018
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Linear and nonlinear regression prediction of surface wind components
Ist Teil von
  • Climate dynamics, 2018-11, Vol.51 (9-10), p.3291-3309
Ort / Verlag
Berlin/Heidelberg: Springer Berlin Heidelberg
Erscheinungsjahr
2018
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • This study compares the statistical predictability by linear regression of surface wind components using mid-tropospheric predictors with predictability by three nonlinear regression methods: neural networks, support vector machines and random forests. The results, obtained at 2109 land stations, show that more complex nonlinear regression methods cannot substantially outperform linear regression in cross-validated statistical prediction of surface wind components. As well, predictive anisotropy (variations in statistical predictive skill in different directions) are generally similar for both linear and nonlinear regression methods. However, there is a modest trend of systematic improvement in nonlinear predictability for surface wind components with fluctuations of relatively small magnitude or large kurtosis, which suggests weak nonlinear predictive signals may exist in this situation. Although nonlinear predictability tends to be higher for stations with low linear predictability and nonlinear predictive anisotropy tends to be weaker for stations with strong linear predictive anisotropy, these differences are not substantial in most cases. Overall, we find little justification for the use of complex nonlinear regression methods in statistical prediction of surface wind components as linear regression is much less computationally expensive and results in predictions of comparable skill.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX