Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Survey on SDN based network intrusion detection system using machine learning approaches
Ist Teil von
Peer-to-peer networking and applications, 2019-03, Vol.12 (2), p.493-501
Ort / Verlag
New York: Springer US
Erscheinungsjahr
2019
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
Software Defined Networking Technology (SDN) provides a prospect to effectively detect and monitor network security problems ascribing to the emergence of the programmable features. Recently, Machine Learning (ML) approaches have been implemented in the SDN-based Network Intrusion Detection Systems (NIDS) to protect computer networks and to overcome network security issues. A stream of advanced machine learning approaches – the deep learning technology (DL) commences to emerge in the SDN context. In this survey, we reviewed various recent works on machine learning (ML) methods that leverage SDN to implement NIDS. More specifically, we evaluated the techniques of deep learning in developing SDN-based NIDS. In the meantime, in this survey, we covered tools that can be used to develop NIDS models in SDN environment. This survey is concluded with a discussion of ongoing challenges in implementing NIDS using ML/DL and future works.