Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 1 von 88
IEEE transactions on industrial electronics (1982), 2018-03, Vol.65 (3), p.2378-2387
2018
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Broadband Load Torque Estimation in Mechatronic Powertrains Using Nonlinear Kalman Filtering
Ist Teil von
  • IEEE transactions on industrial electronics (1982), 2018-03, Vol.65 (3), p.2378-2387
Ort / Verlag
New York: IEEE
Erscheinungsjahr
2018
Quelle
IEEE Electronic Library Online
Beschreibungen/Notizen
  • An important bottleneck in the design, operation, and exploitation of mechatronic powertrains is the lack of accurate knowledge of broadband external loading. This is caused by the intrusive nature of regular torque measurements. This paper proposes a novel nonintrusive approach to obtain torsional load information on mechatronic powertrains. Online coupled state/input estimation is performed through an augmented nonlinear Kalman filter. This estimation approach exploits general lumped-parameter physics-based models in order to create a widely applicable framework. This paper considers both extended (EKF) and unscented Kalman filtering approaches. Contrary to previous works, no considerable difference in accuracy is obtained from experiments, with a considerably lower computational load for the EKF. This paper reveals the benefits of including rotational acceleration measurements from a theoretical perspective, which is demonstrated through the experimental validation. This drastically increases the broadband accuracy. The result of this paper is an accurate and noninvasive virtual torque sensor with a sufficiently broad bandwidth for use in condition monitoring, control, and future design optimization.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX