Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Solid and Liquid Obesogenic Diets Induce Obesity and Counter-Regulatory Changes in Hypothalamic Gene Expression in Juvenile Sprague-Dawley Rats1,2
Ist Teil von
The Journal of nutrition, 2007-06, Vol.137 (6), p.1483
Ort / Verlag
Bethesda: American Institute of Nutrition
Erscheinungsjahr
2007
Quelle
Oxford Journals 2020 Medicine
Beschreibungen/Notizen
Contemporary foods and beverages that constitute the diets of adults and children almost certainly contribute to the obesity problem. To develop a model of childhood obesity, we examined the effects of feeding juvenile rats 2 solid diets, either alone or in combination [nonpurified control diet (C), high-energy (HE), or C+HE] with or without the liquid supplement Ensure (EN). Rats were fed C until 4 wk of age and then were assigned to 1 of 6 weight-matched groups that were fed C, HE, C+HE, C+EN, HE+EN, or C+HE+EN for 5 wk. EN accelerated weight gain and increased energy intake and adiposity irrespective of the solid diet consumed. Serum leptin concentrations were increased after the consumption of all diets when compared with C rats, but there was dissociation between leptin levels and adiposity. The type of solid diet had no effect on the expression of a panel of hypothalamic genes except for glutamate-decarboxylase-67. EN decreased mRNA for agouti-related peptide and neuropeptide Y in the arcuate nucleus and DYN in the paraventricular nucleus. Dynorphin and CART mRNA were decreased in the supraoptic retrochiasmatic nucleus. The reduction in orexigenic signaling in the hypothalamus suggests that overconsumption of EN is sensed by the hypothalamus but that any initiated physiological responses fail to compensate effectively and may be negated or overwhelmed by other systems. Providing diets in solid and liquid form, with choice, mimics more closely the human environment. Understanding the interactions between these diets and peripheral and central energy balance systems could be crucial in unraveling the events underlying human obesity and its early development. [PUBLICATION ABSTRACT]