Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Probability theory and related fields, 2017-12, Vol.169 (3-4), p.901-930
Ort / Verlag
Berlin/Heidelberg: Springer Berlin Heidelberg
Erscheinungsjahr
2017
Quelle
SpringerNature Journals
Beschreibungen/Notizen
We investigate the phase transition in a non-planar correlated percolation model with long-range dependence, obtained by considering level sets of a Gaussian free field with mass above a given height
h
. The dependence present in the model is a notorious impediment when trying to analyze the behavior near criticality. Alongside the critical threshold
h
∗
for percolation, a second parameter
h
∗
∗
≥
h
∗
characterizes a strongly subcritical regime. We prove that the relevant crossing probabilities converge to 1 polynomially fast below
h
∗
∗
, which (firmly) suggests that the phase transition is sharp. A key tool is the derivation of a suitable differential inequality for the free field that enables the use of a (conditional) influence theorem.