Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
•A new numerical scheme to solve the problem of horizontal infiltration is proposed.•The numerical results are consistent with experimental data.•This new scheme is 900% faster in some examples.•A comparison between our scheme, the fractional integral scheme and experimental data.
Predicting the horizontal groundwater flow in unsaturated porous media is a challenge in many areas of science and engineering. The governing equation associated with this phenomenon is a nonlinear partial differential equation known as the Richards equation. However, the numerical results obtained using this equation can differ substantially from the experimental results. In order to overcome this difficulty, a new version of the Richards equation was proposed recently that considers a time derivative of fractional order. In this study, we present a numerical method for solving this fractional Richards equation. Our method comprises an adaptive time marching scheme that uses Picard iterations to solve the corresponding nonlinear equations. A computational code was implemented for the proposed method using the Scilab programming language. We performed numerical simulations of the anomalous diffusion of water in a white siliceous brick and showed that the numerical results were consistent with the available experimental data.