Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
ROBUST DISCRIMINATION DESIGNS OVER HELLINGER NEIGHBOURHOODS
Ist Teil von
The Annals of statistics, 2017-08, Vol.45 (4), p.1638-1663
Ort / Verlag
Hayward: Institute of Mathematical Statistics
Erscheinungsjahr
2017
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
To aid in the discrimination between two, possibly nonlinear, regression models, we study the construction of experimental designs. Considering that each of these two models might be only approximately specified, robust "maximin" designs are proposed. The rough idea is as follows. We impose neighbourhood structures on each regression response, to describe the uncertainty in the specifications of the true underlying models. We determine the least favourable—in terms of Kullback–Leibler divergence—members of these neighbourhoods. Optimal designs are those maximizing this minimum divergence. Sequential, adaptive approaches to this maximization are studied. Asymptotic optimality is established.