Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 1 von 31

Details

Autor(en) / Beteiligte
Titel
A variational framework to model diffusion induced large plastic deformation and phase field fracture during initial two-phase lithiation of silicon electrodes
Ist Teil von
  • Computer methods in applied mechanics and engineering, 2016-12, Vol.312, p.51-77
Ort / Verlag
Amsterdam: Elsevier B.V
Erscheinungsjahr
2016
Link zum Volltext
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • Silicon (Si) is considered to be a promising next-generation anode material for lithium-ion batteries. However, the large volume change during (de)lithiation processes causes fracture of Si electrodes, thereby limiting Si’s practical application in lithium-ion batteries. In this work, we formulate a variational-based fully chemo-mechanical coupled computational framework to study diffusion induced large plastic deformation and phase field fracture in Si electrodes. Into this framework we incorporate a recently developed reaction-controlled diffusion model to predict two-phase lithiation for amorphous Si (a-Si) and crystalline Si (c-Si) as well as diffusion induced anisotropic deformation for c-Si. The variational formulation suggests to consider the deformation field, the chemical potential, and the damage field as primary unknowns. The concentration field is considered as a local variable and is recovered from the chemical potential on the element level. We carry out several numerical simulations to show the performance of our computational model and point out the significance of accurately accounting for the presence of the reaction front when modeling diffusion induced fracture problems for both a-Si and c-Si electrodes. In addition, we investigate how the fracture energy release rate, electrode geometry, and geometrical constraints affect the fracture behavior of Si electrodes. •A variational based computational framework that combines multiple dissipative phenomena is proposed.•Diffusion induced large plastic deformation and phase field fracture during two-phase lithiation of silicon electrodes is modeled.•The effect of fracture energy release rate, electrode geometry, and geometric constraints on the fracture behavior of silicon electrodes is investigated.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX