Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...

Details

Autor(en) / Beteiligte
Titel
In Vivo Self‐Powered Wireless Transmission Using Biocompatible Flexible Energy Harvesters
Ist Teil von
  • Advanced functional materials, 2017-07, Vol.27 (25), p.n/a
Ort / Verlag
Hoboken: Wiley Subscription Services, Inc
Erscheinungsjahr
2017
Quelle
Wiley-Blackwell Journals
Beschreibungen/Notizen
  • Additional surgeries for implantable biomedical devices are inevitable to replace discharged batteries, but repeated surgeries can be a risk to patients, causing bleeding, inflammation, and infection. Therefore, developing self‐powered implantable devices is essential to reduce the patient's physical/psychological pain and financial burden. Although wireless communication plays a critical role in implantable biomedical devices that contain the function of data transmitting, it has never been integrated with in vivo piezoelectric self‐powered system due to its high‐level power consumption (microwatt‐scale). Here, wireless communication, which is essential for a ubiquitous healthcare system, is successfully driven with in vivo energy harvesting enabled by high‐performance single‐crystalline (1 − x)Pb(Mg1/3Nb2/3)O3−(x)Pb(Zr,Ti)O3 (PMN‐PZT). The PMN‐PZT energy harvester generates an open‐circuit voltage of 17.8 V and a short‐circuit current of 1.74 µA from porcine heartbeats, which are greater by a factor of 4.45 and 17.5 than those of previously reported in vivo piezoelectric energy harvesting. The energy harvester exhibits excellent biocompatibility, which implies the possibility for applying the device to biomedical applications. In vivo self‐powered wireless transmission using a flexible single‐crystalline piezoelectric energy harvester is demonstrated. The high‐performance energy harvester generates an output voltage of 17.8 V and a current of 1.75 µA from the contraction and relaxation motion of porcine heart. The energy from in vivo physiological motion enables self‐powered wireless transmission, thus realizing practical application in the ubiquitous healthcare system.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX