Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 24 von 42

Details

Autor(en) / Beteiligte
Titel
In Situ, Fast, High‐Temperature Synthesis of Nickel Nanoparticles in Reduced Graphene Oxide Matrix
Ist Teil von
  • Advanced energy materials, 2017-06, Vol.7 (11), p.n/a
Ort / Verlag
Weinheim: Wiley Subscription Services, Inc
Erscheinungsjahr
2017
Quelle
Access via Wiley Online Library
Beschreibungen/Notizen
  • For the first time, a fast heating–cooling process is reported for the synthesis of carbon‐coated nickel (Ni) nanoparticles on a reduced graphene oxide (RGO) matrix (nano‐Ni@C/RGO) as a high‐performance H2O2 fuel catalyst. The Joule heating temperature can reach up to ≈2400 K and the heating time can be less than 0.1 s. Ni microparticles with an average diameter of 2 µm can be directly converted into nanoparticles with an average diameter of 75 nm. The Ni nanoparticles embedded in RGO are evaluated for electro‐oxidation performance as a H2O2 fuel in a direct peroxide–peroxide fuel cell, which exhibits an electro‐oxidation current density of 602 mA cm−2 at 0.2 V (vs Ag/AgCl), ≈150 times higher than the original Ni microparticles embedded in the RGO matrix (micro‐Ni/RGO). The high‐temperature, fast Joule heating process also leads to a 4–5 nm conformal carbon coating on the surface of the Ni nanoparticles, which anchors them to the RGO nanosheets and leads to an excellent catalytic stability. The newly developed nano‐Ni@C/RGO composites by Joule heating hold great promise for a range of emerging energy applications, including the advanced anode materials of fuel cells. Carbon‐encapsulated nickel nanoparticles are homogenously anchored on a reduced graphene oxide (RGO) film through an ultrafast, high‐temperature, and in situ Joule heating process. The in situ‐synthesized nickel nanoparticles on the RGO film exhibit excellent electrocatalytic performance toward hydrogen peroxide (H2O2) electro‐oxidation and show great promise as an anode material for direct peroxide–peroxide fuel cells.
Sprache
Englisch
Identifikatoren
ISSN: 1614-6832
eISSN: 1614-6840
DOI: 10.1002/aenm.201601783
Titel-ID: cdi_proquest_journals_1906667181

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX