Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Trapdoor computational fuzzy extractors and stateless cryptographically-secure physical unclonable functions
Ist Teil von
IEEE transactions on dependable and secure computing, 2017-01, Vol.14 (1), p.65-82
Ort / Verlag
Washington: IEEE
Erscheinungsjahr
2017
Quelle
IEEE Electronic Library (IEL)
Beschreibungen/Notizen
We present a fuzzy extractor whose security can be reduced to the hardness of Learning Parity with Noise (LPN) and can efficiently correct a constant fraction of errors in a biometric source with a "noise-avoiding trapdoor." Using this computational fuzzy extractor, we present a stateless construction of a cryptographically-secure Physical Unclonable Function. Our construct requires no non-volatile (permanent) storage, secure or otherwise, and its computational security can be reduced to the hardness of an LPN variant under the random oracle model. The construction is "stateless," because there is no information stored between subsequent queries, which mitigates attacks against the PUF via tampering. Moreover, our stateless construction corresponds to a PUF whose outputs are free of noise because of internal error-correcting capability, which enables a host of applications beyond authentication. We describe the construction, provide a proof of computational security, analysis of the security parameter for system parameter choices, and present experimental evidence that the construction is practical and reliable under a wide environmental range.