Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Storytelling Voice Conversion: Evaluation Experiment Using Gaussian Mixture Models
Ist Teil von
Journal of Electrical Engineering, 2015-07, Vol.66 (4), p.194-202
Ort / Verlag
Bratislava: De Gruyter Poland
Erscheinungsjahr
2015
Quelle
EZB Electronic Journals Library
Beschreibungen/Notizen
Abstract In the development of the voice conversion and personification of the text-to-speech (TTS) systems, it is very necessary to have feedback information about the users’ opinion on the resulting synthetic speech quality. Therefore, the main aim of the experiments described in this paper was to find out whether the classifier based on Gaussian mixture models (GMM) could be applied for evaluation of different storytelling voices created by transformation of the sentences generated by the Czech and Slovak TTS system. We suppose that it is possible to combine this GMM-based statistical evaluation with the classical one in the form of listening tests or it can replace them. The results obtained in this way were in good correlation with the results of the conventional listening test, so they confirm practical usability of the developed GMM classifier. With the help of the performed analysis, the optimal setting of the initial parameters and the structure of the input feature set for recognition of the storytelling voices was finally determined.