Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 22 von 33814
IEEE transactions on multimedia, 2016-06, Vol.18 (6), p.1217-1229
2016
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Differentially Private Online Learning for Cloud-Based Video Recommendation With Multimedia Big Data in Social Networks
Ist Teil von
  • IEEE transactions on multimedia, 2016-06, Vol.18 (6), p.1217-1229
Ort / Verlag
Piscataway: IEEE
Erscheinungsjahr
2016
Quelle
IEEE Electronic Library Online
Beschreibungen/Notizen
  • With the rapid growth in multimedia services and the enormous offers of video content in online social networks, users have difficulty in obtaining their interests. Therefore, various personalized recommendation systems have been proposed. However, they ignore that the accelerated proliferation of social media data has led to the big data era, which has greatly impeded the process of video recommendation. In addition, none of them has considered both the privacy of users' contexts (e.g., social status, ages, and hobbies) and video service vendors' repositories, which are extremely sensitive and of significant commercial value. To handle these problems, we propose a cloud-assisted differentially private video recommendation system based on distributed online learning. In our framework, service vendors are modeled as distributed cooperative learners, recommending videos according to user's context, while simultaneously adapting the video-selection strategy based on user-click feedback to maximize total user clicks (reward). Considering the sparsity and heterogeneity of big social media data, we also propose a novel geometric differentially private model, which can greatly reduce the performance loss. Our simulation shows the proposed algorithms outperform other existing methods and keep a delicate balance between the total reward and privacy preserving level.
Sprache
Englisch
Identifikatoren
ISSN: 1520-9210
eISSN: 1941-0077
DOI: 10.1109/TMM.2016.2537216
Titel-ID: cdi_proquest_journals_1789312579

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX