Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
An Overview of Low-Rank Matrix Recovery From Incomplete Observations
Ist Teil von
IEEE journal of selected topics in signal processing, 2016-06, Vol.10 (4), p.608-622
Ort / Verlag
New York: IEEE
Erscheinungsjahr
2016
Quelle
IEEE Electronic Library Online
Beschreibungen/Notizen
Low-rank matrices play a fundamental role in modeling and computational methods for signal processing and machine learning. In many applications where low-rank matrices arise, these matrices cannot be fully sampled or directly observed, and one encounters the problem of recovering the matrix given only incomplete and indirect observations. This paper provides an overview of modern techniques for exploiting low-rank structure to perform matrix recovery in these settings, providing a survey of recent advances in this rapidly-developing field. Specific attention is paid to the algorithms most commonly used in practice, the existing theoretical guarantees for these algorithms, and representative practical applications of these techniques.