Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 14 von 81
IEEE transactions on instrumentation and measurement, 2016-03, Vol.65 (3), p.510-521
2016
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Robust Visual Detection-Learning-Tracking Framework for Autonomous Aerial Refueling of UAVs
Ist Teil von
  • IEEE transactions on instrumentation and measurement, 2016-03, Vol.65 (3), p.510-521
Ort / Verlag
New York: IEEE
Erscheinungsjahr
2016
Quelle
IEEE Electronic Library (IEL)
Beschreibungen/Notizen
  • In this paper, we propose a robust visual detection-learning-tracking framework for autonomous aerial refueling of unmanned aerial vehicles. Two classifiers (D-classifier and T-classifier) are defined in the proposed framework. The D-classifier is a robust linear support vector machine (SVM) classifier trained offline for detecting the drogue object of aerial refueling and a low-dimensional normalized robust local binary pattern feature is proposed to describe the drogue object in the D-classifier. The T-classifier is a state-based structured SVM classifier trained online for tracking the drogue object. A combination strategy between the D-classifier and the T-classifier is proposed in the framework. The D-classifier is used to assess if some positive support vectors in the T-classifier are required to be replaced by positive examples with density peaks. The experimental results on several challenging video sequences validate the effectiveness and robustness of our proposed framework.
Sprache
Englisch
Identifikatoren
ISSN: 0018-9456
eISSN: 1557-9662
DOI: 10.1109/TIM.2015.2509318
Titel-ID: cdi_proquest_journals_1787202619

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX