Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 9 von 442
2014
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Surface metrology of contact lenses in saline solution
Ort / Verlag
ProQuest Dissertations & Theses
Erscheinungsjahr
2014
Quelle
ProQuest Dissertations & Theses A&I
Beschreibungen/Notizen
  • Measurement of the quality and performance of soft contact lenses is not new and is continually evolving as manufacturing methods develop and more complicated contact lenses become available. Qualification of soft contact lenses has not been a simple task since they are fundamentally difficult to measure. The shape of the lens is extremely sensitive to how the lens is supported and the material properties can change quickly with time. These lenses have been measured in several different ways, the most successful being non-contact optical methods that measure the lens while it is immersed in saline solution. All of these tests measure the lens in transmission and do not directly measure the surface structure of the lens. The reason for this is that the Fresnel reflectivity of the surface of a contact lens in saline solution is about 0.07%. Surface measurements have been performed in air, but not in saline. The lens needs to be measured in solution so that it can maintain its true shape. An interferometer is proposed, constructed, verified, and demonstrated to measure the aspheric low reflectivity surfaces of a contact lens while they are immersed in saline solution. The problem is extremely difficult and requires delicate balance between stray light mitigation, color correction, and polarization management. The resulting system implements reverse raytracing algorithms to correct for retrace errors so that highly aspheric, toric, and distorted contact lens surfaces can be measured. The interferometer is capable of measuring both surfaces from the same side of the contact lens as well as the lens thickness. These measurements along with the index of refraction of the lens material are enough build a complete 3D model of the lens. A simulated transmission test of the 3D model has been shown to match the real transmission test of the same lens to within 32nm RMS or 1/20th of a wave at the test wavelength.
Sprache
Englisch
Identifikatoren
ISBN: 1321343795, 9781321343793
Titel-ID: cdi_proquest_journals_1625429290
Format
Schlagworte
Ophthalmology, Optics

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX