Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 10 von 6211
SIAM journal on scientific computing, 2014-01, Vol.36 (1), p.C25-C48
2014
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
A Framework for the Automation of Generalized Stability Theory
Ist Teil von
  • SIAM journal on scientific computing, 2014-01, Vol.36 (1), p.C25-C48
Ort / Verlag
Philadelphia: Society for Industrial and Applied Mathematics
Erscheinungsjahr
2014
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • The traditional approach to investigating the stability of a physical system is to linearize the equations about a steady base solution, and to examine the eigenvalues of the linearized operator. Over the past several decades, it has been recognized that this approach only determines the asymptotic stability of the system, and neglects the possibility of transient perturbation growth arising due to the nonnormality of the system. This observation motivated the development of a more powerful generalized stability theory (GST), which focuses instead on the singular value decomposition (SVD) of the linearized propagator of the system. While GST has had significant successes in understanding the stability of phenomena in geophysical fluid dynamics, its more widespread applicability has been hampered by the fact that computing the SVD requires both the tangent linear operator and its adjoint: deriving the tangent linear and adjoint models is usually a considerable challenge, and manually embedding them inside an eigensolver is laborious. In this paper, we present a framework for the automation of generalized stability theory, which overcomes these difficulties. Given a compact high-level symbolic representation of a finite element discretization implemented in the FEniCS system, efficient C++ code is automatically generated to assemble the forward, tangent linear, and adjoint models; these models are then used to calculate the optimally growing perturbations to the forward model, as well as their growth rates. By automating the stability computations, we hope to make these powerful tools a more routine part of computational analysis. The efficiency and generality of the framework are demonstrated, with applications drawn from geophysical fluid dynamics, phase separation, and quantum mechanics. [PUBLICATION ABSTRACT]
Sprache
Englisch
Identifikatoren
ISSN: 1064-8275
eISSN: 1095-7197
DOI: 10.1137/120900745
Titel-ID: cdi_proquest_journals_1490691296

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX