Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Abstract Let ${\Xmathfrak g}={\Xmathfrak g}_{\zerox }\oplus {\Xmathfrak g}_{\onex }$ be a classical Lie superalgebra and let F be the category of finite-dimensional ${\Xmathfrak g}$ -supermodules which are completely reducible over the reductive Lie algebra ${\Xmathfrak g}_{\zerox }$ . In [B. D. Boe, J. R. Kujawa and D. K. Nakano, Complexity and module varieties for classical Lie superalgebras, Int. Math. Res. Not. IMRN (2011), 696-724], we demonstrated that for any module M in the rate of growth of the minimal projective resolution (i.e. the complexity of M) is bounded by the dimension of ${\Xmathfrak g}_{\onex }$ . In this paper we compute the complexity of the simple modules and the Kac modules for the Lie superalgebra $\Xmathfrak {gl}(m|n)$ . In both cases we show that the complexity is related to the atypicality of the block containing the module. [PUBLICATION ABSTRACT]