Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 6 von 3424
Proceedings of the National Academy of Sciences - PNAS, 2015-05, Vol.112 (18), p.5750-5755
2015
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Agricultural insecticides threaten surface waters at the global scale
Ist Teil von
  • Proceedings of the National Academy of Sciences - PNAS, 2015-05, Vol.112 (18), p.5750-5755
Ort / Verlag
United States: National Academy of Sciences
Erscheinungsjahr
2015
Quelle
MEDLINE
Beschreibungen/Notizen
  • Compared with nutrient levels and habitat degradation, the importance of agricultural pesticides in surface water may have been underestimated due to a lack of comprehensive quantitative analysis. Increasing pesticide contamination results in decreasing regional aquatic biodiversity, i.e., macroinvertebrate family richness is reduced by ∼30% at pesticide concentrations equaling the legally accepted regulatory threshold levels (RTLs). This study provides a comprehensive metaanalysis of 838 peer-reviewed studies (>2,500 sites in 73 countries) that evaluates, for the first time to our knowledge on a global scale, the exposure of surface waters to particularly toxic agricultural insecticides. We tested whether measured insecticide concentrations (MICs; i.e., quantified insecticide concentrations) exceed their RTLs and how risks depend on insecticide development over time and stringency of environmental regulation. Our analysis reveals that MICs occur rarely (i.e., an estimated 97.4% of analyses conducted found no MICs) and there is a complete lack of scientific monitoring data for ∼90% of global cropland. Most importantly, of the 11,300 MICs, 52.4% (5,915 cases; 68.5% of the sites) exceeded the RTL for either surface water (RTL SW) or sediments. Thus, the biological integrity of global water resources is at a substantial risk. RTL SW exceedances depend on the catchment size, sampling regime, and sampling date; are significantly higher for newer-generation insecticides (i.e., pyrethroids); and are high even in countries with stringent environmental regulations. These results suggest the need for worldwide improvements to current pesticide regulations and agricultural pesticide application practices and for intensified research efforts on the presence and effects of pesticides under real-world conditions. Significance Agricultural systems are drivers of global environmental degradation. Insecticides, in particular, are highly biologically active substances that can threaten the ecological integrity of aquatic and terrestrial ecosystems. Despite widespread insecticide application to croplands worldwide, no comprehensive field data-based evaluation of their risk to global surface waters exists. Our data show, for the first time to our knowledge at the global scale, that more than 50% of detected insecticide concentrations ( n = 11,300) exceed regulatory threshold levels. This finding indicates that surface water pollution resulting from current agricultural insecticide use constitutes an excessive threat to aquatic biodiversity. Overall, our analysis suggests that fundamental revisions of current regulatory procedures and pesticide application practices are needed to reverse the global environmental impacts of agrochemical-based high-intensity agriculture.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX