Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 17 von 135
Proceedings of the National Academy of Sciences - PNAS, 2011-09, Vol.108 (37), p.15046-15052
2011
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Chemical genetic strategy for targeting protein kinases based on covalent complementarity
Ist Teil von
  • Proceedings of the National Academy of Sciences - PNAS, 2011-09, Vol.108 (37), p.15046-15052
Ort / Verlag
United States: National Academy of Sciences
Erscheinungsjahr
2011
Quelle
MEDLINE
Beschreibungen/Notizen
  • The conserved nature of the ATP-binding site of the > 500 human kinases renders the development of specific inhibitors a challenging task. A widely used chemical genetic strategy to overcome the specificity challenge exploits a large-to-small mutation of the gatekeeper residue (a conserved hydrophobic amino acid) and the use of a bulky inhibitor to achieve specificity via shape complementarity. However, in a number of cases, introduction of a glycine or alanine gatekeeper results in diminished kinase activity and ATP affinity. A new chemical genetic approach based on covalent complementarity between an engineered gatekeeper cysteine and an electrophilic inhibitor was developed to address these challenges. This strategy was evaluated with Src, a proto-oncogenic tyrosine kinase known to lose some enzymatic activity using the shape complementarity chemical genetic strategy. We found that Src with a cysteine gatekeeper recapitulates wild type activity and can be irreversibly inhibited both in vitro and in cells. A cocrystal structure of T338C c-Src with a vinylsulfonamide-derivatized pyrazolopyrimidine inhibitor was solved to elucidate the inhibitor binding mode. A panel of electrophilic inhibitors was analyzed against 307 kinases and MOK (MAPK/MAK/MRK overlapping kinase), one of only two human kinases known to have an endogenous cysteine gatekeeper. This analysis revealed remarkably few off-targets, making these compounds the most selective chemical genetic inhibitors reported to date. Protein engineering studies demonstrated that it is possible to increase inhibitor potency through secondary-site mutations. These results suggest that chemical genetic strategies based on covalent complementarity should be widely applicable to the study of protein kinases.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX