Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 8 von 356
PloS one, 2023-01, Vol.18 (1), p.e0279934-e0279934
2023
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
An automated method for the assessment of the rice grain germination rate
Ist Teil von
  • PloS one, 2023-01, Vol.18 (1), p.e0279934-e0279934
Ort / Verlag
United States: Public Library of Science
Erscheinungsjahr
2023
Quelle
Free E-Journal (出版社公開部分のみ)
Beschreibungen/Notizen
  • The germination rate of rice grain is recognized as one of the most significant indicators of seed quality assessment. Currently, grain germination rate is generally determined manually by experienced researchers, which is time-consuming and labor-intensive. In this paper, a new method is proposed for counting the number of grains and germinated grains. In the coarse segmentation process, the k-means clustering algorithm is applied to obtain rough grain-connected regions. We further refine the segmentation results obtained by the k-means algorithm using a one-dimensional Gaussian filter and a fifth-degree polynomial. Next, the optimal single grain area is determined based on the area distribution curve. Accordingly, the number of grains contained in the connected region is equal to the area of the connected region divided by the optimal single grain area. Finally, a novel algorithm is proposed for counting germinated grains. This algorithm is based on the idea that the length of the intersection between the germ and the grain is less than the circumference of the germ. The experimental results show that the mean absolute error of the proposed method for germination rate is 2.7%. And the performance of the proposed method is robust to changes in grain number, grain varieties, scale, illumination, and rotation.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX