Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 19 von 18626

Details

Autor(en) / Beteiligte
Titel
NuSeT: A deep learning tool for reliably separating and analyzing crowded cells
Ist Teil von
  • PLoS computational biology, 2020-09, Vol.16 (9), p.e1008193
Ort / Verlag
United States: Public Library of Science
Erscheinungsjahr
2020
Quelle
MEDLINE
Beschreibungen/Notizen
  • Segmenting cell nuclei within microscopy images is a ubiquitous task in biological research and clinical applications. Unfortunately, segmenting low-contrast overlapping objects that may be tightly packed is a major bottleneck in standard deep learning-based models. We report a Nuclear Segmentation Tool (NuSeT) based on deep learning that accurately segments nuclei across multiple types of fluorescence imaging data. Using a hybrid network consisting of U-Net and Region Proposal Networks (RPN), followed by a watershed step, we have achieved superior performance in detecting and delineating nuclear boundaries in 2D and 3D images of varying complexities. By using foreground normalization and additional training on synthetic images containing non-cellular artifacts, NuSeT improves nuclear detection and reduces false positives. NuSeT addresses common challenges in nuclear segmentation such as variability in nuclear signal and shape, limited training sample size, and sample preparation artifacts. Compared to other segmentation models, NuSeT consistently fares better in generating accurate segmentation masks and assigning boundaries for touching nuclei.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX