Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
When many gametes compete to fertilize a limited number of compatible gametes, sexual selection will favour traits that increase competitive success during mating. In animals and plants, sperm and pollen competition have yielded many interesting adaptations for improved mating success. In fungi, similar processes have not been shown directly yet. We test the hypothesis that sexual selection can increase competitive fitness during mating, using experimental evolution in the mushroom-forming fungus Schizophyllum commune (Basidiomycota). Mating in mushroom fungi occurs by donation of nuclei to a mycelium. These fertilizing 'male' nuclei migrate through the receiving 'female' mycelium. In our setup, an evolving population of nuclei was serially mated with a non-evolving female mycelium for 20 sexual generations. From the twelve tested evolved lines, four had increased and one had decreased fitness relative to an unevolved competitor. Even though only two of those five remained significant after correcting for multiple comparisons, for all five lines we found a correlation between the efficiency with which the female mycelium is accessed and fitness, providing additional circumstantial evidence for fitness change in those five lines. In two lines, fitness change was also accompanied by increased spore production. The one line with net reduced competitive fitness had increased spore production, but reduced fertilisation efficiency. We did not find trade-offs between male reproductive success and other fitness components. We compare these findings with examples of sperm and pollen competition and show that many similarities between these systems and nuclear competition in mushrooms exist.