Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 17 von 1047

Details

Autor(en) / Beteiligte
Titel
Dynamical selection of Nash equilibria using reinforcement learning: Emergence of heterogeneous mixed equilibria
Ist Teil von
  • PloS one, 2018-07, Vol.13 (7), p.e0196577-e0196577
Ort / Verlag
United States: Public Library of Science
Erscheinungsjahr
2018
Quelle
EZB Electronic Journals Library
Beschreibungen/Notizen
  • We study the distribution of strategies in a large game that models how agents choose among different double auction markets. We classify the possible mean field Nash equilibria, which include potentially segregated states where an agent population can split into subpopulations adopting different strategies. As the game is aggregative, the actual equilibrium strategy distributions remain undetermined, however. We therefore compare with the results of a reinforcement learning dynamics inspired by Experience-Weighted Attraction (EWA) learning, which at long times leads to Nash equilibria in the appropriate limits of large intensity of choice, low noise (long agent memory) and perfect imputation of missing scores (fictitious play). The learning dynamics breaks the indeterminacy of the Nash equilibria. Non-trivially, depending on how the relevant limits are taken, more than one type of equilibrium can be selected. These include the standard homogeneous mixed and heterogeneous pure states, but also heterogeneous mixed states where different agents play different strategies that are not all pure. The analysis of the reinforcement learning involves Fokker-Planck modeling combined with large deviation methods. The theoretical results are confirmed by multi-agent simulations.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX