Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 18 von 991

Details

Autor(en) / Beteiligte
Titel
Novel technique for repairing posterior medial meniscus root tears using porcine knees and biomechanical study
Ist Teil von
  • PloS one, 2018-02, Vol.13 (2), p.e0192027-e0192027
Ort / Verlag
United States: Public Library of Science
Erscheinungsjahr
2018
Quelle
EZB Electronic Journals Library
Beschreibungen/Notizen
  • Transtibial pullout suture (TPS) repair of posterior medial meniscus root (PMMR) tears was shown to achieve good clinical outcomes. The purpose of this study was to compare biomechanically, a novel technique designed to repair PMMR tears using tendon graft (TG) and conventional TPS repair. Twelve porcine tibiae (n = 6 each) TG group: flexor digitorum profundus tendon was passed through an incision in the root area, created 5 mm postero-medially along the edge of the attachment area. TPS group: a modified Mason-Allen suture was created using no. 2 FiberWire. The tendon grafts and sutures were threaded through the bone tunnel and then fixed to the anterolateral cortex of the tibia. The two groups underwent cyclic loading followed by a load-to-failure test. Displacements of the constructs after 100, 500, and 1000 loading cycles, and the maximum load, stiffness, and elongation at failure were recorded. The TG technique had significantly lower elongation and higher stiffness compared with the TPS. The maximum load of the TG group was significantly lower than that of the TPS group. Failure modes for all specimens were caused by the suture or graft cutting through the meniscus. Lesser elongation and higher stiffness of the constructs in TG technique over those in the standard TPS technique might be beneficial for postoperative biological healing between the meniscus and tibial plateau. However, a slower rehabilitation program might be necessary due to its relatively lower maximum failure load.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX