Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 15 von 1761
PloS one, 2017-03, Vol.12 (3), p.e0172526-e0172526
2017
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Efficient string similarity join in multi-core and distributed systems
Ist Teil von
  • PloS one, 2017-03, Vol.12 (3), p.e0172526-e0172526
Ort / Verlag
United States: Public Library of Science
Erscheinungsjahr
2017
Quelle
Electronic Journals Library
Beschreibungen/Notizen
  • In big data area a significant challenge about string similarity join is to find all similar pairs more efficiently. In this paper, we propose a parallel processing framework for efficient string similarity join. First, the input is split into some disjoint small subsets according to the joint frequency distribution and the interval distribution of strings. Then the filter-verification strategy is adopted in the computation of string similarity for each subset so that the number of candidate pairs is reduced before an effective pruning strategy is used to improve the performance. Finally, the operation of string join is executed in parallel. Para-Join algorithm based on the multi-threading technique is proposed to implement the framework in a multi-core system while Pada-Join algorithm based on Spark platform is proposed to implement the framework in a cluster system. We prove that Para-Join and Pada-Join cannot only avoid reduplicate computation but also ensure the completeness of the result. Experimental results show that Para-Join can achieve high efficiency and significantly outperform than state-of-the-art approaches, meanwhile, Pada-Join can work on large datasets.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX