Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 20 von 200948
PloS one, 2017-01, Vol.12 (1), p.e0161501-e0161501
2017
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
SVM and SVM Ensembles in Breast Cancer Prediction
Ist Teil von
  • PloS one, 2017-01, Vol.12 (1), p.e0161501-e0161501
Ort / Verlag
United States: Public Library of Science
Erscheinungsjahr
2017
Quelle
MEDLINE
Beschreibungen/Notizen
  • Breast cancer is an all too common disease in women, making how to effectively predict it an active research problem. A number of statistical and machine learning techniques have been employed to develop various breast cancer prediction models. Among them, support vector machines (SVM) have been shown to outperform many related techniques. To construct the SVM classifier, it is first necessary to decide the kernel function, and different kernel functions can result in different prediction performance. However, there have been very few studies focused on examining the prediction performances of SVM based on different kernel functions. Moreover, it is unknown whether SVM classifier ensembles which have been proposed to improve the performance of single classifiers can outperform single SVM classifiers in terms of breast cancer prediction. Therefore, the aim of this paper is to fully assess the prediction performance of SVM and SVM ensembles over small and large scale breast cancer datasets. The classification accuracy, ROC, F-measure, and computational times of training SVM and SVM ensembles are compared. The experimental results show that linear kernel based SVM ensembles based on the bagging method and RBF kernel based SVM ensembles with the boosting method can be the better choices for a small scale dataset, where feature selection should be performed in the data pre-processing stage. For a large scale dataset, RBF kernel based SVM ensembles based on boosting perform better than the other classifiers.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX