Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 9 von 316

Details

Autor(en) / Beteiligte
Titel
High bandwidth synaptic communication and frequency tracking in human neocortex
Ist Teil von
  • PLoS biology, 2014-11, Vol.12 (11), p.e1002007-e1002007
Ort / Verlag
United States: Public Library of Science
Erscheinungsjahr
2014
Quelle
MEDLINE
Beschreibungen/Notizen
  • Neuronal firing, synaptic transmission, and its plasticity form the building blocks for processing and storage of information in the brain. It is unknown whether adult human synapses are more efficient in transferring information between neurons than rodent synapses. To test this, we recorded from connected pairs of pyramidal neurons in acute brain slices of adult human and mouse temporal cortex and probed the dynamical properties of use-dependent plasticity. We found that human synaptic connections were purely depressing and that they recovered three to four times more swiftly from depression than synapses in rodent neocortex. Thereby, during realistic spike trains, the temporal resolution of synaptic information exchange in human synapses substantially surpasses that in mice. Using information theory, we calculate that information transfer between human pyramidal neurons exceeds that of mouse pyramidal neurons by four to nine times, well into the beta and gamma frequency range. In addition, we found that human principal cells tracked fine temporal features, conveyed in received synaptic inputs, at a wider bandwidth than for rodents. Action potential firing probability was reliably phase-locked to input transients up to 1,000 cycles/s because of a steep onset of action potentials in human pyramidal neurons during spike trains, unlike in rodent neurons. Our data show that, in contrast to the widely held views of limited information transfer in rodent depressing synapses, fast recovering synapses of human neurons can actually transfer substantial amounts of information during spike trains. In addition, human pyramidal neurons are equipped to encode high synaptic information content. Thus, adult human cortical microcircuits relay information at a wider bandwidth than rodent microcircuits.
Sprache
Englisch
Identifikatoren
ISSN: 1545-7885, 1544-9173
eISSN: 1545-7885
DOI: 10.1371/journal.pbio.1002007
Titel-ID: cdi_plos_journals_1685009306

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX