Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 2 von 68

Details

Autor(en) / Beteiligte
Titel
Does occupational exposure to solvents and pesticides in association with glutathione S-transferase A1, M1, P1, and T1 polymorphisms increase the risk of bladder cancer? The Belgrade case-control study
Ist Teil von
  • PloS one, 2014-06, Vol.9 (6), p.e99448
Ort / Verlag
United States: Public Library of Science
Erscheinungsjahr
2014
Link zum Volltext
Quelle
Free E-Journal (出版社公開部分のみ)
Beschreibungen/Notizen
  • We investigated the role of the glutathione S-transferase A1, M1, P1 and T1 gene polymorphisms and potential effect modification by occupational exposure to different chemicals in Serbian bladder cancer male patients. A hospital-based case-control study of bladder cancer in men comprised 143 histologically confirmed cases and 114 age-matched male controls. Deletion polymorphism of glutathione S-transferase M1 and T1 was identified by polymerase chain reaction method. Single nucleotide polymorphism of glutathione S-transferase A1 and P1 was identified by restriction fragment length polymorphism method. As a measure of effect size, odds ratio (OR) with corresponding 95% confidence interval (95%CI) was calculated. The glutathione S-transferase A1, T1 and P1 genotypes did not contribute independently toward the risk of bladder cancer, while the glutathione S-transferase M1-null genotype was overrepresented among cases (OR = 2.1, 95% CI = 1.1-4.2, p = 0.032). The most pronounced effect regarding occupational exposure to solvents and glutathione S-transferase genotype on bladder cancer risk was observed for the low activity glutathione S-transferase A1 genotype (OR = 9.2, 95% CI = 2.4-34.7, p = 0.001). The glutathione S-transferase M1-null genotype also enhanced the risk of bladder cancer among subjects exposed to solvents (OR = 6,5, 95% CI = 2.1-19.7, p = 0.001). The risk of bladder cancer development was 5.3-fold elevated among glutathione S-transferase T1-active patients exposed to solvents in comparison with glutathione S-transferase T1-active unexposed patients (95% CI = 1.9-15.1, p = 0.002). Moreover, men with glutathione S-transferase T1-active genotype exposed to pesticides exhibited 4.5 times higher risk in comparison with unexposed glutathione S-transferase T1-active subjects (95% CI = 0.9-22.5, p = 0.067). Null or low-activity genotypes of the glutathione S-transferase A1, T1, and P1 did not contribute independently towards the risk of bladder cancer in males. However, in association with occupational exposure, low activity glutathione S-transferase A1 and glutathione S-transferase M1-null as well as glutathione S-transferase T1-active genotypes increase individual susceptibility to bladder cancer.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX