Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 23 von 62

Details

Autor(en) / Beteiligte
Titel
Tamoxifen-induced epigenetic silencing of oestrogen-regulated genes in anti-hormone resistant breast cancer
Ist Teil von
  • PloS one, 2012-07, Vol.7 (7), p.e40466
Ort / Verlag
United States: Public Library of Science
Erscheinungsjahr
2012
Quelle
MEDLINE
Beschreibungen/Notizen
  • In the present study, we have taken the novel approach of using an in vitro model representative of tamoxifen-withdrawal subsequent to clinical relapse to achieve a greater understanding of the mechanisms that serve to maintain the resistant-cell phenotype, independent of any agonistic impact of tamoxifen, to identify potential novel therapeutic approaches for this disease state. Following tamoxifen withdrawal, tamoxifen-resistant MCF-7 cells conserved both drug resistance and an increased basal rate of proliferation in an oestrogen deprived environment, despite reduced epidermal growth-factor receptor expression and reduced sensitivity to gefitinib challenge. Although tamoxifen-withdrawn cells retained ER expression, a sub-set of ER-responsive genes, including pS2 and progesterone receptor (PgR), were down-regulated by promoter DNA methylation, as confirmed by clonal bisulphite sequencing experiments. Following promoter demethylation with 5-Azacytidine (5-Aza), the co-addition of oestradiol (E2) restored gene expression in these cells. In addition, 5-Aza/E2 co-treatment induced a significant anti-proliferative effect in the tamoxifen-withdrawn cells, in-contrast to either agent used alone. Microarray analysis was undertaken to identify genes specifically up regulated by this co-treatment. Several anti-proliferative gene candidates were identified and their promoters were confirmed as more heavily methylated in the tamoxifen resistant vs sensitive cells. One such gene candidate, growth differentiation factor 15 (GDF15), was carried forward for functional analysis. The addition of 5-Aza/E2 was sufficient to de-methylate and activate GDF15 expression in the tamoxifen resistant cell-lines, whilst in parallel, treatment with recombinant GDF15 protein decreased cell survival. These data provide evidence to support a novel concept that long-term tamoxifen exposure induces epigenetic silencing of a cohort of oestrogen-responsive genes whose function is associated with negative proliferation control. Furthermore, reactivation of such genes using epigenetic drugs could provide a potential therapeutic avenue for the management of tamoxifen-resistant breast cancer.
Sprache
Englisch
Identifikatoren
ISSN: 1932-6203
eISSN: 1932-6203
DOI: 10.1371/journal.pone.0040466
Titel-ID: cdi_plos_journals_1325435709

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX