Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 7 von 173

Details

Autor(en) / Beteiligte
Titel
Human embryonic and fetal mesenchymal stem cells differentiate toward three different cardiac lineages in contrast to their adult counterparts
Ist Teil von
  • PloS one, 2011-09, Vol.6 (9), p.e24164-e24164
Ort / Verlag
United States: Public Library of Science
Erscheinungsjahr
2011
Quelle
MEDLINE
Beschreibungen/Notizen
  • Mesenchymal stem cells (MSCs) show unexplained differences in differentiation potential. In this study, differentiation of human (h) MSCs derived from embryonic, fetal and adult sources toward cardiomyocytes, endothelial and smooth muscle cells was investigated. Labeled hMSCs derived from embryonic stem cells (hESC-MSCs), fetal umbilical cord, bone marrow, amniotic membrane and adult bone marrow and adipose tissue were co-cultured with neonatal rat cardiomyocytes (nrCMCs) or cardiac fibroblasts (nrCFBs) for 10 days, and also cultured under angiogenic conditions. Cardiomyogenesis was assessed by human-specific immunocytological analysis, whole-cell current-clamp recordings, human-specific qRT-PCR and optical mapping. After co-culture with nrCMCs, significantly more hESC-MSCs than fetal hMSCs stained positive for α-actinin, whereas adult hMSCs stained negative. Furthermore, functional cardiomyogenic differentiation, based on action potential recordings, was shown to occur, but not in adult hMSCs. Of all sources, hESC-MSCs expressed most cardiac-specific genes. hESC-MSCs and fetal hMSCs contained significantly higher basal levels of connexin43 than adult hMSCs and co-culture with nrCMCs increased expression. After co-culture with nrCFBs, hESC-MSCs and fetal hMSCs did not express α-actinin and connexin43 expression was decreased. Conduction velocity (CV) in co-cultures of nrCMCs and hESC-MSCs was significantly higher than in co-cultures with fetal or adult hMSCs. In angiogenesis bioassays, only hESC-MSCs and fetal hMSCs were able to form capillary-like structures, which stained for smooth muscle and endothelial cell markers.Human embryonic and fetal MSCs differentiate toward three different cardiac lineages, in contrast to adult MSCs. Cardiomyogenesis is determined by stimuli from the cellular microenvironment, where connexin43 may play an important role.
Sprache
Englisch
Identifikatoren
ISSN: 1932-6203
eISSN: 1932-6203
DOI: 10.1371/journal.pone.0024164
Titel-ID: cdi_plos_journals_1308732760
Format
Schlagworte
Action potential, Adipose tissue, Adult, Adult Stem Cells - cytology, Adult Stem Cells - metabolism, Adult Stem Cells - physiology, Aged, Amniotic membrane, Analysis, Angiogenesis, Animals, Animals, Newborn, Bioassays, Biology, Blotting, Western, Bone marrow, Cardiac arrhythmia, Cardiology, Cardiomyocytes, Cardiovascular disease, Cell culture, Cell Differentiation, Cell Proliferation, Cells, Cultured, Cellular Microenvironment, Coculture Techniques, Conduction, Connexin 43, Connexin 43 - genetics, Connexin 43 - metabolism, Differentiation, Drug dosages, Embryo cells, Embryology, Embryonic stem cells, Embryonic Stem Cells - cytology, Embryonic Stem Cells - metabolism, Embryonic Stem Cells - physiology, Endothelial cells, Experiments, Fetal Stem Cells - cytology, Fetal Stem Cells - metabolism, Fetal Stem Cells - physiology, Fetuses, Fibroblasts, Fibroblasts - cytology, Fibroblasts - metabolism, Fibroblasts - physiology, Flow cytometry, Gene Expression, Heart, Heart attacks, Heart diseases, Humans, Infant, Newborn, Laboratory animals, Male, Medicine, Membrane Potentials - physiology, Mesenchymal stem cells, Mesenchymal Stromal Cells - cytology, Mesenchymal Stromal Cells - metabolism, Mesenchymal Stromal Cells - physiology, Mesenchyme, Myocardium - cytology, Myocardium - metabolism, Myocytes, Cardiac - cytology, Myocytes, Cardiac - metabolism, Myocytes, Cardiac - physiology, Neonates, Propagation, Rats, Rats, Wistar, Reverse Transcriptase Polymerase Chain Reaction, Rodents, Skin & tissue grafts, Smooth muscle, Stem cell transplantation, Stem cells, Telomere - genetics, Umbilical cord, Yang, Cindy, α-Actinin

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX