Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 15 von 154

Details

Autor(en) / Beteiligte
Titel
PLUNC is a novel airway surfactant protein with anti-biofilm activity
Ist Teil von
  • PloS one, 2010-02, Vol.5 (2), p.e9098
Ort / Verlag
United States: Public Library of Science
Erscheinungsjahr
2010
Quelle
MEDLINE
Beschreibungen/Notizen
  • The PLUNC ("Palate, lung, nasal epithelium clone") protein is an abundant secretory product of epithelia present throughout the conducting airways of humans and other mammals, which is evolutionarily related to the lipid transfer/lipopolysaccharide binding protein (LT/LBP) family. Two members of this family--the bactericidal/permeability increasing protein (BPI) and the lipopolysaccharide binding protein (LBP)--are innate immune molecules with recognized roles in sensing and responding to Gram negative bacteria, leading many to propose that PLUNC may play a host defense role in the human airways. Based on its marked hydrophobicity, we hypothesized that PLUNC may be an airway surfactant. We found that purified recombinant human PLUNC greatly enhanced the ability of aqueous solutions to spread on a hydrophobic surface. Furthermore, we discovered that PLUNC significantly reduced surface tension at the air-liquid interface in aqueous solutions, indicating novel and biologically relevant surfactant properties. Of note, surface tensions achieved by adding PLUNC to solutions are very similar to measurements of the surface tension in tracheobronchial secretions from humans and animal models. Because surfactants of microbial origin can disperse matrix-encased bacterial clusters known as biofilms [1], we hypothesized that PLUNC may also have anti-biofilm activity. We found that, at a physiologically relevant concentration, PLUNC inhibited biofilm formation by the airway pathogen Pseudomonas aeruginosa in an in vitro model. Our data suggest that the PLUNC protein contributes to the surfactant properties of airway secretions, and that this activity may interfere with biofilm formation by an airway pathogen.
Sprache
Englisch
Identifikatoren
ISSN: 1932-6203
eISSN: 1932-6203
DOI: 10.1371/journal.pone.0009098
Titel-ID: cdi_plos_journals_1289259681

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX