Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 5 von 2963

Details

Autor(en) / Beteiligte
Titel
Nucleosynthesis in Two-Dimensional Delayed Detonation Models of Type Ia Supernova Explosions
Ist Teil von
  • The Astrophysical journal, 2010-03, Vol.712 (1), p.624-638
Ort / Verlag
Bristol: IOP Publishing
Erscheinungsjahr
2010
Link zum Volltext
Quelle
EZB Electronic Journals Library
Beschreibungen/Notizen
  • For the explosion mechanism of Type Ia supernovae (SNe Ia), different scenarios have been suggested. In these, the propagation of the burning front through the exploding white dwarf (WD) star proceeds in different modes, and consequently imprints of the explosion model on the nucleosynthetic yields can be expected. The nucleosynthetic characteristics of various explosion mechanisms are explored based on three two-dimensional explosion simulations representing extreme cases: a pure turbulent deflagration, a delayed detonation following an approximately spherical ignition of the initial deflagration, and a delayed detonation arising from a highly asymmetric deflagration ignition. Apart from this initial condition, the deflagration stage is treated in a parameter-free approach. The detonation is initiated when the turbulent burning enters the distributed burning regime. This occurs at densities around 10{sup 7} g cm{sup -3}-relatively low as compared to existing nucleosynthesis studies for one-dimensional spherically symmetric models. The burning in these multidimensional models is different from that in one-dimensional simulations as the detonation wave propagates both into unburned material in the high-density region near the center of a WD and into the low-density region near the surface. Thus, the resulting yield is a mixture of different explosive burning products, from carbon-burning products at low densities to complete silicon-burning products at the highest densities, as well as electron-capture products synthesized at the deflagration stage. Detailed calculations of the nucleosynthesis in all three models are presented. In contrast to the deflagration model, the delayed detonations produce a characteristic layered structure and the yields largely satisfy constraints from Galactic chemical evolution. In the asymmetric delayed detonation model, the region filled with electron capture species (e.g., {sup 58}Ni, {sup 54}Fe) is within a shell, showing a large off-set, above the bulk of {sup 56}Ni distribution, while species produced by the detonation are distributed more spherically.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX