Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 23 von 33

Details

Autor(en) / Beteiligte
Titel
Bispectrum Quantification Analysis of EEG and Artificial Neural Network May Classify Ischemic States
Ist Teil von
  • Lecture notes in computer science, 2006, p.533-542
Ort / Verlag
Berlin, Heidelberg: Springer Berlin Heidelberg
Erscheinungsjahr
2006
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • This paper examines the relation between the degree of experimentally induced focal ischemia in the left-brain of 24 experimental rats and Higher Order Statistics (HOS) such as the bispectrum and the bicoherence index of scalp EEG recorded at the time of the ischemic event. The aim is to propose the assessment of HOS in non-invasive scalp EEG to facilitate identification and even classification of focal ischemic events in terms of the degree of tissue damage. The latter is achieved by a supervised, multilayer, feed-forward Artificial Neural Network (ANN). The ANN utilizes a back propagation algorithm to classify ischemic states of the brain. The target values used during the training session of the network are the degree of ischemic tissue damage (graded as serious, middle and slight) as assessed by histological and immunhistochemical methods in the brain slice of the experimental animals. The results show that the ANN can correctly identify and classify ischemic events with high precision 91.67% based on HOS measures of scalp EEG obtained during ischemia. These findings may potentially be of great scientific merit, especially due to their possibly very important medical implications: a potential non-invasive method that reliably identifies the presence and the degree of ischemia at the time of its occurrence.
Sprache
Englisch
Identifikatoren
ISBN: 9783540464815, 3540464816, 3540464794, 9783540464792
ISSN: 0302-9743
eISSN: 1611-3349
DOI: 10.1007/11893257_60
Titel-ID: cdi_pascalfrancis_primary_19969768

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX