Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers
Ist Teil von
IEEE journal of quantum electronics, 1989-11, Vol.25 (11), p.2297-2306
Ort / Verlag
New York, NY: IEEE
Erscheinungsjahr
1989
Quelle
IEL
Beschreibungen/Notizen
Amplification of ultrashort optical pulses in semiconductor laser amplifiers is shown to result in considerable spectral broadening and distortion as a result of the nonlinear phenomenon of self-phase modulation (SPM). The physical mechanism behind SPM is gain saturation, which leads to intensity-dependent changes in the refractive index in response to variations in the carrier density. The effect of the shape and the initial frequency chirp of input pulses on the shape and the spectrum of amplified pulses is discussed in detail. Particular attention is paid to the case in which the input pulsewidth is comparable to the carrier lifetime so that the saturated gain has time to recover partially before the trailing edge of the pulse arrives. The experimental results, performed by using picosecond input pulses from a 1.52- mu m mode-locked semiconductor laser, are in agreement with the theory. When the amplified pulse is passed through a fiber, it is initially compressed because of the frequency chirp imposed on it by the amplifier. This feature can be used to compensate for fiber dispersion in optical communication systems.< >