Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Energy Minimization Methods in Computer Vision and Pattern Recognition, 1999, p.54-69
Ort / Verlag
Berlin, Heidelberg: Springer Berlin Heidelberg
Erscheinungsjahr
1999
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
Consider the problem of fitting a finite Gaussian mixture, with an unknown number of components, to observed data. This paper proposes a new minimum description length (MDL) type criterion, termed MMDL(for mixture MDL), to select the number of components of the model. MMDLis based on the identification of an “equivalent sample size”, for each component, which does not coincide with the full sample size. We also introduce an algorithm based on the standard expectationmaximization (EM) approach together with a new agglomerative step, called agglomerative EM (AEM). The experiments here reported have shown that MMDLo utperforms existing criteria of comparable computational cost. The good behavior of AEM, namely its good robustness with respect to initialization, is also illustrated experimentally.