Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Variational Bayes Estimation of Mixing Coefficients
Ist Teil von
Deterministic and Statistical Methods in Machine Learning, 2005, p.281-295
Ort / Verlag
Berlin, Heidelberg: Springer Berlin Heidelberg
Erscheinungsjahr
2005
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
We investigate theoretically some properties of variational Bayes approximations based on estimating the mixing coefficients of known densities. We show that, with probability 1 as the sample size n grows large, the iterative algorithm for the variational Bayes approximation converges locally to the maximum likelihood estimator at the rate of O(1/n). Moreover, the variational posterior distribution for the parameters is shown to be asymptotically normal with the same mean but a different covariance matrix compared with those for the maximum likelihood estimator. Furthermore we prove that the covariance matrix from the variational Bayes approximation is ‘too small’ compared with that for the MLE, so that resulting interval estimates for the parameters will be unrealistically narrow.